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1 Introduction

Popular ridesharing apps like Uber and Lyft collect a lot of personal information
and location data on riders. Some of this information is viewable by rideshare
drivers as well. For example, until 2018, the Uber app allowed drivers to view
the precise pickup and dropoff locations for all of their past riders. While there
has been a recent effort to reduce data collection and limit sharing with drivers,
the minimum data these apps claim to be necessary still pose a privacy risk
to users since they include dropoff address, pickup address, and first name at
minimum.

We propose a novel design for a ridesharing app, Überprivate, that protects
privacy using the strict mathematical guarantees of Differential Privacy (DP).
We use a relaxed DP model where the central ride-sharing company is treated
as a trusted curator of the user’s location data and the driver is untrusted. In
this model we use differentially private mechanisms specific to location data,
called Geo-Indistinguishability, to perturb the user’s locations for pickup and
dropoff according to their desired privacy level for each location and their desired
walking radius. Although using DP for enhancing ridesharing and carpooling
privacy has been studied, we propose a novel solution for the under-studied
security model that provides privacy from drivers. Furthermore, our solution
prioritizes customizable and understandable privacy for the user. We believe
that by making a relaxation to DP such that each driver has a fresh privacy
budget for each user, we can achieve our privacy and utility goals.

2 Background

2.1 Ride-Sharing and Privacy Risks

There are several privacy risks that motivate the threat models that are for-
malized in the Project Scope section below. First, a primary concern is the
data that the ridesharing application collects on every single ride; this data
could be shared and used in a way that harms the user. As a severe example,
a ridesharing app may deduce from various dropoffs at a cigar bar that a user
is a smoker; if they decide to share that information with the user’s insurance
company, their rate could skyrocket. Second, safety is a primary concern for
users of a ridesharing app, and safety may be threatened by any driver that can
learn their habits and locations of interest. So, the first risk derives primarily
from the central ridesharing app while the second risk derives from the drivers.
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2.2 Potential Threat Models

Our project identifies two threat models in this ride-sharing use-case, though we
focus on one that is less studied in the literature. In the first model, we identify
the case where there are malicious passive drivers and a trusted centralized
company. Here, we choose to exclude active attackers that could change or falsify
rider data because that would interfere with the correctness of the rideshare app,
which is a self-interest that rideshare companies would already be invested in
protecting. The drivers act as passive adversaries by using the sensitive personal
information they learned during the rides to seek out riders on their personal
time.

In the second threat model, we consider the case where the rideshare app
uses self-driving cars. As a result, the sole adversary arises from the existence of
a self-interested rideshare company who may collect and store of vast amounts
of personal data for potentially malicious use. Although this threat model is
also a passive attack and is very similar to the first in its agents, it ignores the
privacy risks presented by the driver.

As will be discussed in the related work section, most prior work focuses
on models similar to that of the second one. As such, we focus on the first
threat model, where we have malicious passive drivers and a trusted centralized
company.

2.3 Differential Privacy

We are motivated to apply differential privacy to solve this problem because of
its strong mathematical notions of privacy. In differential privacy, a data prac-
titioner can control the strength of the privacy guarantee by tuning the privacy
parameter ϵ, also called a privacy loss or privacy budget. The lower the value
of the ϵ parameter, the more indistinguishable the results, and therefore the
more each individual’s data is protected. The application of noise to the results
of the queries mathematically bounds the risk of an adversary learning about
any given individual’s presence in the dataset. One of the most common noise
mechanisms in DP is random sampling from the Laplace distribution. However,
making the data more private by adding noise inherently means making the
data less useful.

The key tradeoff when using Differential Privacy is between privacy and
utility. Currently, users in ridesharing choose their pickup and dropoff, so they
could intentionally obfuscate their true travel plans in theory, but in practice
few people do this. However, if this process was automated and customized to
suit the user’s desired level of privacy, some users may be willing to lose some
utility (i.e. walking farther to their pickup) to gain some privacy and therefore
peace of mind.

2.4 Geo-Indistinguishability

Geo-Indistinguishability is an interpretation of differential privacy with a loca-
tion focused lens that was introduced by Andres, et al. [1]. It inherits useful
properties from the differential privacy framework, such as composability of the
privacy loss budget across queries. Similar to DP, it bounds the adversary’s
ability to learn information about someone’s true location based on a noisy
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location. However, while classic DP concerns the ability of an adversary to
distinguish between two databases (one with and one without a given record),
geo-indistinguishability concerns the ability of an adversary to distinguish be-
tween two locations, x and x’, based on euclidean distance. Similarly, as classic
DP uses noise mechanisms that sample random noise from a distribution like
the Laplace distribution, geo-indistinguishability uses the Planar Laplace mech-
anism, which samples a random θ and a random r that is scaled by the privacy
parameter ϵ according to the planar Laplace distribution to produce a new,
noisy location. To improve utility, the authors suggest extra optimization steps:

1. They define an ”Area of Interest” which is the area around the user’s true
location x that they consider relevant (i.e. our walking radius)

2. They calculate the noisy location x′ as described above, and use that for
the location based query (i.e. finding nearby points of interest) with a
larger ”Area of Retrieval” radius. This radius doesn’t impact privacy but
has potential impacts on accuracy of the mechanism as well as its speed
and network overhead.

3. They filter the results from the ”Area of Retrieval” to use only those
within the user’s ”Area of Interest”

Classically, geo-indistinguishability is based purely on privacy loss parameter
ϵ and euclidean distance, and treats the planar coordinate space uniformly. But,
in reality, our maps have a lot of semantic information about locations that is
lost by treating the entire space the same. Therefore, Chatzikokolakis et al.
explored the use of ”elastics metrics” that factor population density and other
location semantics into the Geo-Indistinguishability noise mechanism [2].

3 Related Work

In our project, we will utilize Differential Privacy as defined in the extensive
work by Cynthia Dwork [3]. This provides a rigorous mathematical definition
of privacy which enables us to quantify privacy in the context of ridesharing.

Beyond definitions, Hesselmann, Gertheiss, and Müller provide insight into
the current state of practice for handling user data in popular ridesharing apps
[4]. They provide nicely merged attributes such as contact information, social
media, personal description, interests, job, and address (each of these merged
attributes have smaller atomic attributes), and the general protection of these
attributes among 12 ridesharing companies.

Fatima Errounda and Yan Liu provide a detailed survey involving the many
approaches to differential privacy on data that involves locations and trajecto-
ries [5]. Specifically, they introduce and detail general approaches to location
privacy such as distance-based, obfuscation-based, and anonymity-based meth-
ods. Distance-based methods focus on shifting the indistinguishability to the
observed locations of a single user. Obfuscation-based is focused on sharing an
approximation of the true location without the need for it to correlate with the
true location. Lastly, anonymity-based methods focus on making partitioned
spaces (that consist of users’ locations) indistinguishable, such as in [6] and [7].

The general approaches above correspond to location-based masking. It is
important to note that most of the current literature involves calculating an

3



optimal meeting-point, masking the true location (k-anonymity, obfuscation,
etc.), and using differential privacy to achieve “geo-indistinguishability”. An-
other approach adopted by Uber is elastic sensitivity [8]. This approach focuses
on enforcing differential privacy to Uber databases by calculating the sensitivity
of a query without having to make changes to the database itself.

The total range of the related work we have presented reveals how complex
protecting user data in ridesharing can be. This complex lies in the many prob-
lems that need to be considered such as the scheduling of the rides, optimization
of the total path (pickup, dropoff, and general path), and overall service quality
of the given app. As a result, most of the academic papers focus on the above
complexes. Our project will take on a strong privacy perspective instead of
focusing on the numerous other potential considerations in ridesharing. More-
over, we consider a unique threat model that is not considered in other attempts
at privatizing ride-sharing, because most prior work focuses on protecting user
data from the central application rather than from the drivers.

4 Proposed Solution

4.1 Goals

As discussed in prior sections, we prioritize protecting the user in a threat model
that contains potentially malicious drivers while providing an understandable
interface for users to customize and understand their privacy with. As such we
define the following goals for our proposed solution:

• Protect User Locations from Drivers

• Enable User-Controlled Privacy Levels on a Per-Location basis

• Enable User-Controlled Walking Radii on a Per-Location basis

• Incorporate Context-Awareness of Location Semantics into the Noise Mech-
anism

We outlined in prior sections why location privacy from drivers is important.
For user-controlled privacy parameters, we consider this an important goal be-
cause users want to keep different locations more private than others (i.e. home
versus work office), and they might be willing to walk more or less based on that
location and their desired privacy level. Moreover, we think location semantics,
like population density, are important factors that can contribute to the noise
level added, because, for example, dense urban areas give you a much stronger
ability to “hide amongst the crowd” as compared to rural areas.

4.2 System Overview

Überprivate is our proposed solution to the described problem and threat model.
The system we propose uses a noise mechanism that satisfies geo-indistinguishability
by perturbing the user’s pickup and dropoff location according to their per-
location privacy level and walking radii settings. This noise mechanism uses an
elastic metric, as proposed in [2], that factors population density of the map
into the noise mechanism to provide more a realistic tradeoff between privacy
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and utility. The driver will then pick up and drop off the user at the noisy
locations shared by the ride-sharing app. Although the driver matching algo-
rithm is mostly a black box for this use case, we specify that it must incorporate
budget tracking such that each driver can only pick up the same user for a given
location a bounded number of times according to the user-specified privacy loss
budget, which will be further detailed below.

4.3 Helping Users Understand Privacy Parameters

Figure 1: Location Configuration User Interface

The first step for a user in our system when taking a ride from a new
place is to specify the desired privacy parameters for that location. In geo-
indistinguishability, the privacy loss budget for a certain location is specified as
ϵ = l

r where l is the desired privacy level for that location and where r is the
radius in which you want to protect that location to that level. In Figure 1
we present mock-ups of how we would provide. Notably, they can use a sliding
scale to determine their radius of pickup. This value corresponds to the ”Area
of Interest” in the generalized geo-indistinguishability literature, . Though this
”Area of Interest” radius can actually be a different value from r, we set them
equal for simplicity in this system so the user has fewer free parameters to con-
cern themselves with. Then, the user would similarly choose their privacy level
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for the location in a sliding scale user interface as well. Lastly, the interface
would show the user their privacy protection for that location based on their
configurations as a binned value: “low”, “medium”, or “high”. This binning
is a crucial simplification step that frames privacy in a less precise, but much
more understandable way.

These configurations are crucial for the user experience. As discussed, a
user might really value their location privacy for their home, but not for a very
public place like the grocery store or airport. Similarly, they may be willing to
walk farther in order to get this stronger privacy for certain locations, or they
might not be willing to walk far, in which case it might severely limit how many
times a given driver can pick them up around a sensitive location.

Figure 2: Diagram of the Ride Querying Process for a User

4.4 Ride Querying System

Now we further elaborate on our solution for the Ride Querying system, which is
summarized in Figure 2. We follow the optimized model for geo-indistinguishable
applications with high utility needs as described in Section 2.4. First, the user
sends their location privacy configurations to the ride-sharing app as described
in above, which sets up the total privacy budget ϵ that each driver would be
able to expend for picking them up at a given location x. Then, they query for
a ride at their desired location x. Überprivate applies noise to x to produce a
ϵ0-geo-indistinguishable location x′, where ϵ0 is some fraction of ϵ that would
need to be decided by the ride-sharing app experimentally to balance the utility
(i.e. reducing how far a user needs to walk) with the limit on the number of
times a given driver can pick up a user in that place1. The noise mechanism uses
the ”elastic metric” for distance as proposed in [2] that essentially warps the

1This may be important, for instance, if a given driver can only pick them up at a certain
location once; eventually, a user will likely face higher wait times as the app would need to
find a driver with a non-expended budget, which will become more and more difficult as this
population shrinks.
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geometrical distance measurement to incorporate factors of location semantics
like population density.

This noise mechanism returns noisy x′, which Überprivate uses to generate a
set of points of interest (or just coordinates on the plane) in the area surrounding
x′. Then as described in the optimized technqiue in 2.4, the user will filter the
results to only include those withing the walking radius, and then it will choose
a random point amongst these to select as the pickup location. This noisy point-
of-interest is inputted into the Driver Matching Algorithm. The main invariant
we care about in this algorithm is that no driver ever expends their budget for
a given user and location. Though this might mean that a user may eventually
have no eligible driver matches, we believe this can be configured to be very,
very unlikely. In the last step, the noisy point-of-interest is sent to the driver,
who should not be able to learn much about the user’s true sensitive location
based on the pickup location.

4.5 Budget Relaxation

Crucially, we make the relaxation that for each user’s location, each driver has
their own budget to expend. In classical DP, a privatized dataset release is
assumed to be known by everyone once released, so their is no ”per-person” pri-
vacy budget for each person who sees the query result. Rather, there is a global
tracking of privacy loss incurred by each release. As such, if we used this classic
model in our system, our privacy loss would grow in an unbounded fashion,
since every driver who picked someone up from a given location would erode
the global privacy loss further. Therefore, we consider a more realistic model
where non-colluding drivers are assumed to keep information to themselves and
have separate privacy loss budget tracking from one another.

5 Discussion

5.1 Future Work

Though we originally started with the goal of protecting the user from both the
central ride-sharing app and the drivers, it quickly appeared to us as a much
more difficult problem. However, we think future work in this area could once
again attempt this. For instance, we can imagine an alternate system where the
geo-indistinguishability noise mechanism is applied locally on a user’s phone,
though the elastic metric model of noise might be too large and computationally
heavy for some devices. In theory, this would ensure that even the central app
never sees the true location.

If we did not pursue this more difficult threat model, we could pursue other
optimizations of Überprivate instead. For example, since the central app is
trusted, it could potentially cache the noisy locations for each user’s sensitive
location, and reuse the value without further expending the privacy budget
for a certain driver. This would allow a driver to pick up a given rider in
the same noisy x′ more than once without further privacy loss as a form of
”post-processing”, which differently privacy is immune to [3]. This seems like
a promising idea but would need further security analysis to ensure there is no
form of privacy leakage.
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5.2 Conclusion

The aim of this project was to highlight how user misconceptions leave them
vulnerable to privacy risks in ride-sharing contexts and how we might incor-
porate ideas of differential privacy to reduce privacy loss and aid user under-
standing. Some users greatly value their location privacy, but configurability
in the level of privacy is important given how widely user attitudes vary on
sensitivities of different locations. Overall, Überprivate incorporated our goals
of user-controlled location privacy levels and walking radii to protect user lo-
cations from drivers to their specified level. We incorporate the idea of elastic
distance metrics to account for context-awareness of location semantics in the
application of noise, which allows for more realistic privacy protection rather
than a uniform treatment of space. However, to prevent unbounded privacy
loss, we make the relaxation that each user’s location has a privacy loss budget
that can be used independently in parallel by different drivers, rather than a
global budget that would become quickly expended.
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